SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Ryabko Daniil Ryabko | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Asymptotic Nonparametric Statistical Analysis of Stationary Time Series
Daniil Ryabko
Springer (2019)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Universal Time-Series Forecasting with Mixture Predictors
Daniil Ryabko
Springer (2020)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Universal Time-Series Forecasting with Mixture Predictors
Ryabko Daniil Ryabko
Springer Nature B.V. (2020)
Pehmeäkantinen kirja
115,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recent Advances in Reinforcement Learning - 8th European Workshop, EWRL 2008, Villeneuve d'Ascq, France, June 30-July 3, 2008, R
Sertan Girgin; Manuel Loth; Rémi Munos; Philippe Preux; Daniil Ryabko
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2008)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Asymptotic Nonparametric Statistical Analysis of Stationary Time Series
49,60 €
Springer
Sivumäärä: 77 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2019, 21.03.2019 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Computer Science
Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus  a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone.  Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume these  results are summarize.  The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which  a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented.  In addition, a number of open problems is presented.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Asymptotic Nonparametric Statistical Analysis of Stationary Time Serieszoom
Näytä kaikki tuotetiedot
ISBN:
9783030125639
Asiasanat:
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste