SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Ruonan Li | Akateeminen Kirjakauppa

DOMAIN ADAPTATION FOR VISUAL RECOGNITION

Domain Adaptation for Visual Recognition
Raghuraman Gopalan; Ruonan Li; Vishal M. Patel; Rama Chellappa
now publishers Inc (2015)
Pehmeäkantinen kirja
76,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Domain Adaptation for Visual Recognition
76,40 €
now publishers Inc
Sivumäärä: 110 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2015, 11.03.2015 (lisätietoa)
Kieli: Englanti
Tuotesarja: Foundations and Trends(r) in C 25
Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sensors, variations due to illumination and viewpoint among others, computer vision applications present a very natural test bed for evaluating domain adaptation methods.

This monograph provides a comprehensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, it discusses three adaptation scenarios, namely, (i) unsupervised adaptation where the ""source domain"" training data is partially labeled and the ""target domain"" test data is unlabeled; (ii) semi-supervised adaptation where the target domain also has partial labels; and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different.

For all of these scenarios, Domain Adaptation for Visual Recognition discusses the existing adaptation techniques in the literature. These techniques are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations, and have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept classification, and person detection.

This book concludes by analyzing the challenges posed by the realm of ""big visual data"" - in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability - and draws parallels with efforts from the vision community on image transformation models and invariant descriptors so as to facilitate improved understanding of vision problems under uncertainty.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Domain Adaptation for Visual Recognitionzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste