SULJE VALIKKO

avaa valikko

Roger+Chalkley | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Basic Global Relative Invariants for Nonlinear Differential Equations
Roger Chalkley
John Wiley & Sons (2007)
Pehmeäkantinen kirja
115,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Relative Invariants from 1879 Onward: Their Evolution for Differential Equations
Roger Chalkley
LLUMINA PR (2013)
Kovakantinen kirja
70,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Group-Pattern Matrices
Roger Chalkley
Independently Published (2021)
Pehmeäkantinen kirja
19,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Group-Pattern Matrices
Roger Chalkley
Roger Chalkley (2022)
Kovakantinen kirja
49,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
BEST - Implementing Career Development Activities for Biomedical Research Trainees
Lorena Infante Lara; Laura Daniel; Roger Chalkley
Elsevier Science Publishing Co Inc (2020)
Pehmeäkantinen kirja
119,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Basic Global Relative Invariants for Nonlinear Differential Equations
115,10 €
John Wiley & Sons
Sivumäärä: 366 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2007, 30.10.2007 (lisätietoa)
Kieli: Englanti
The problem of deducing the basic relative invariants possessed by monic homogeneous linear differential equations of order $m$ was initiated in 1879 with Edmund Laguerre's success for the special case $m = 3$. It was solved in number 744 of the Memoirs of the AMS (March 2002), by a procedure that explicitly constructs, for any $m geq3$, each of the $m - 2$ basic relative invariants. During that 123-year time span, only a few results were published about the basic relative invariants for other classes of ordinary differential equations. With respect to any fixed integer $,m geq 1$, the author begins by explicitly specifying the basic relative invariants for the class $,mathcal{C {m,2 $ that contains equations like $Q {m = 0$ in which $Q {m $ is a quadratic form in $y(z), , dots, , y{(m) (z)$ having meromorphic coefficients written symmetrically and the coefficient of $bigl( y{(m) (z) bigr){2 $ is $1$.Then, in terms of any fixed positive integers $m$ and $n$, the author explicitly specifies the basic relative invariants for the class $,mathcal{C {m,n $ that contains equations like $H {m,n = 0$ in which $H {m,n $ is an $n$th-degree form in $y(z), , dots, , y{(m) (z)$ having meromorphic coefficients written symmetrically and the coefficient of $bigl( y{(m) (z) bigr){n $ is $1$. These results enable the author to obtain the basic relative invariants for additional classes of ordinary differential equations.

Loppuunmyyty
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Basic Global Relative Invariants for Nonlinear Differential Equations
Näytä kaikki tuotetiedot
ISBN:
9780821839911
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Meistä
Yhteystiedot ja aukioloajat
Usein kysytyt
Akateemisen Ystäväklubi
Toimitusehdot
Tietosuojaseloste
Seuraa Akateemista
Instagram
Facebook
Threads
TikTok
YouTube
LinkedIn