SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Roberto Triggiana | Akateeminen Kirjakauppa

TANGENTIAL BOUNDARY STABILIZATION OF NAVIER-STOKES EQUATIONS

Tangential Boundary Stabilization of Navier-Stokes Equations
Viorel Barbu; Irena Lasiecka; Roberto Triggiana
American Mathematical Society (2006)
Pehmeäkantinen kirja
127,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Tangential Boundary Stabilization of Navier-Stokes Equations
127,60 €
American Mathematical Society
Sivumäärä: 128 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2006, 01.05.2006 (lisätietoa)
The steady-state solutions to Navier-Stokes equations on a bounded domain $Omega subset R^d$, $d = 2,3$, are locally exponentially stabilizable by a boundary closed-loop feedback controller, acting tangentially on the boundary $partial Omega$, in the Dirichlet boundary conditions. The greatest challenge arises from a combination between the control as acting on the boundary and the dimensionality $d=3$. If $d=3$, the non-linearity imposes and dictates the requirement that stabilization must occur in the space $(H^{tfrac{3}{2}+epsilon}(Omega))^3$, $epsilon > 0$, a high topological level. A first implication thereof is that, due to compatibility conditions that now come into play, for $d=3$, the boundary feedback stabilizing controller must be infinite dimensional.Moreover, it generally acts on the entire boundary $partial Omega$. Instead, for $d=2$, where the topological level for stabilization is $(H^{tfrac{3}{2}-epsilon}(Omega))^2$, the boundary feedback stabilizing controller can be chosen to act on an arbitrarily small portion of the boundary. Moreover, still for $d=2$, it may even be finite dimensional, and this occurs if the linearized operator is diagonalizable over its finite-dimensional unstable subspace. In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations.As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness - between the unboundedness of the boundary control operator and the unboundedness of the penalization or observation operator - is strictly larger than $tfrac{3}{2}$, as expressed in terms of fractional powers of the free-dynamics operator.In contrast, established (and rich) optimal control theory [L-T.2 ] of boundary control parabolic problems and corresponding algebraic Riccati theory requires a combined index of unboundedness strictly less than 1. An additional preliminary serious difficulty to overcome lies at the outset of the program, in establishing that the present highly non-standard OCP - with the aforementioned high level of unboundedness in control and observation operators and subject, moreover, to the additional constraint that the controllers be pointwise tangential - be non-empty; that is, it satisfies the so-called Finite Cost Condition [L-T.2].

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Tangential Boundary Stabilization of Navier-Stokes Equations
Näytä kaikki tuotetiedot
ISBN:
9780821838747
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste