SULJE VALIKKO

avaa valikko

Rémi Munos | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



From Bandits to Monte-Carlo Tree Search - The Optimistic Principle Applied to Optimization and Planning
Rémi Munos
now publishers Inc (2014)
Pehmeäkantinen kirja
98,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Recent Advances in Reinforcement Learning - 8th European Workshop, EWRL 2008, Villeneuve d'Ascq, France, June 30-July 3, 2008, R
Sertan Girgin; Manuel Loth; Rémi Munos; Philippe Preux; Daniil Ryabko
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2008)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Algorithmic Learning Theory - 24th International Conference, ALT 2013, Singapore, October 6-9, 2013, Proceedings
Sanjay Jain; Rémi Munos; Frank Stephan; Thomas Zeugmann
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2013)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
From Bandits to Monte-Carlo Tree Search - The Optimistic Principle Applied to Optimization and Planning
98,60 €
now publishers Inc
Sivumäärä: 146 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2014, 20.01.2014 (lisätietoa)
Kieli: Englanti
Tuotesarja: Foundations and Trends(r) in M 21
From Bandits to Monte-Carlo Tree Search covers several aspects of the ""optimism in the face of uncertainty"" principle for large scale optimization problems under finite numerical budget. The monograph's initial motivation came from the empirical success of the so-called ""Monte-Carlo Tree Search"" method popularized in Computer Go and further extended to many other games as well as optimization and planning problems. It lays out the theoretical foundations of the field by characterizing the complexity of the optimization problems and designing efficient algorithms with performance guarantees.

The main direction followed in this monograph consists in decomposing a complex decision making problem (such as an optimization problem in a large search space) into a sequence of elementary decisions, where each decision of the sequence is solved using a stochastic ""multi-armed bandit"" (mathematical model for decision making in stochastic environments). This defines a hierarchical search which possesses the nice feature of starting the exploration by a quasi-uniform sampling of the space and then focusing, at different scales, on the most promising areas (using the optimistic principle) until eventually performing a local search around the global optima of the function.

This monograph considers the problem of function optimization in general search spaces (such as metric spaces, structured spaces, trees, and graphs) as well as the problem of planning in Markov decision processes. Its main contribution is a class of hierarchical optimistic algorithms with different algorithmic instantiations depending on whether the evaluations are noisy or noiseless and whether some measure of the local ''smoothness'' of the function around the global maximum is known or unknown.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
From Bandits to Monte-Carlo Tree Search - The Optimistic Principle Applied to Optimization and Planningzoom
Näytä kaikki tuotetiedot
ISBN:
9781601987662
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste