Jonathan Lawry; Enrique Miranda; Alberto Bugarin; Shoumei Li; Maria Angeles Gil; Przemyslaw Grzegorzewski; Olg Hryniewicz Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2006) Pehmeäkantinen kirja
Didier Dubois (ed.); Maria Asuncion Lubiano (ed.); Henri Prade (ed.); María Angeles Gil (ed.); Przemyslaw (ed Grzegorzewski Springer (2008) Pehmeäkantinen kirja
Miguel Concepcion Lopez-Diaz; Maria Angeles Gil; Przemyslaw Grzegorzewski; Olgierd Hryniewicz; Jonathan Lawry Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2004) Pehmeäkantinen kirja
Rudolf Kruse; Michael R. Berthold; Christian Moewes; María Ángeles Gil; Przemysław Grzegorzewski; Olgierd Hryniewicz Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2012) Pehmeäkantinen kirja
Guy de Trė; Przemysław Grzegorzewski; Janusz Kacprzyk; Jan W. Owsiński; Wojciech Penczek; Sławomir Zadrożny Springer International Publishing AG (2016) Kovakantinen kirja
Maria Brigida Ferraro; Paolo Giordani; Barbara Vantaggi; Marek Gagolewski; María Ángeles Gil; Przemysław Grzegorzewski; Hr Springer International Publishing AG (2016) Pehmeäkantinen kirja
Sébastien Destercke; Thierry Denoeux; María Ángeles Gil; Przemyslaw Grzegorzewski; Olgierd Hryniewicz Springer International Publishing AG (2018) Pehmeäkantinen kirja
Guy de Trė; Przemysław Grzegorzewski; Janusz Kacprzyk; Jan W. Owsiński; Wojciech Penczek; Sławomir Zadrożny Springer International Publishing AG (2018) Pehmeäkantinen kirja
The idea of soft computing emerged in the early 1990s from the fuzzy systems c- munity, and refers to an understanding that the uncertainty, imprecision and ig- rance present in a problem should be explicitly represented and possibly even - ploited rather than either eliminated or ignored in computations. For instance, Zadeh de?ned ‘Soft Computing’ as follows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques including fuzzy systems, neural networks, and biologically inspired methods such as genetic algorithms. Here, however, we adopt a more straightforward de?nition consistent with the original concept. Hence, soft methods are understood as those uncertainty formalisms not part of mainstream s- tistics and probability theory which have typically been developed within the AI and decisionanalysiscommunity.Thesearemathematicallysounduncertaintymodelling methodologies which are complementary to conventional statistics and probability theory.