SULJE VALIKKO

avaa valikko

Pierre Lochak | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



On the Splitting of Invariant Manifolds in Multidimensional Near-integrable Hamiltonian Systems
Pierre Lochak; J.-P. Marco; D. Sauzin
American Mathematical Society (2003)
Pehmeäkantinen kirja
133,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Geometric Galois Actions: Volume 1, Around Grothendieck's Esquisse d'un Programme
Leila Schneps; Pierre Lochak
Cambridge University Press (1997)
Pehmeäkantinen kirja
98,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Geometric Galois Actions: Volume 2, The Inverse Galois Problem, Moduli Spaces and Mapping Class Groups
Leila Schneps; Pierre Lochak
Cambridge University Press (1997)
Pehmeäkantinen kirja
98,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Moduli Spaces of Curves, Mapping Class Groups and Field Theory
Xavier Buff; Jerome Fehrenbach; Pierre Lochak; Leila Schneps; Pierre Vogel
American Mathematical Society (2003)
Pehmeäkantinen kirja
61,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Integrable Systems and Applications - Proceedings of a Workshop Held at Oléron, France, June 20–24, 1988
Mikhael Balabane; Pierre Lochak; Catherine Sulem
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2014)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
On the Splitting of Invariant Manifolds in Multidimensional Near-integrable Hamiltonian Systems
133,90 €
American Mathematical Society
Sivumäärä: 145 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2003, 01.05.2003 (lisätietoa)
In this text we take up the problem of the splitting of invariant manifolds in multidimensional Hamiltonian systems, stressing the canonical features of the problem. We first conduct a geometric study, which for a large part is not restricted to the perturbative situation of near-integrable systems. This point of view allows us to clarify some previously obscure points, in particular the symmetry and variance properties of the splitting matrix (indeed its very definition(s)) and more generally the connection with symplectic geometry. Using symplectic normal forms, we then derive local exponential upper bounds for the splitting matrix in the perturbative analytic case, under fairly general circumstances covering in particular resonances of any multiplicity.The next technical input is the introduction of a canonically invariant scheme for the computation of the splitting matrix. It is based on the familiar Hamilton-Jacobi picture and thus again is symplectically invariant from the outset. It is applied here to a standard Hamiltonian exhibiting many of the important features of the problem and allows us to explore in a unified way the question of finding lower bounds for the splitting matrix, in particular that of justifying a first order computation (the so-called Poincare-Melnikov approximation). Although we do not specifically address the issue in this paper we mention that the problem of the splitting of the invariant manifold is well-known to be connected with the existence of a global instability in these multidimensional Hamiltonian systems and we hope the present study will ultimately help shed light on this important connection first noted and explored by V. I. Arnold.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
On the Splitting of Invariant Manifolds in Multidimensional Near-integrable Hamiltonian Systems
Näytä kaikki tuotetiedot
ISBN:
9780821832684
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste