SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Pawel Idziak | Akateeminen Kirjakauppa

GENERATIVE COMPLEXITY IN ALGEBRA

Generative Complexity in Algebra
Joel Berman; Pawel Idziak
American Mathematical Society (2005)
Pehmeäkantinen kirja
131,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Generative Complexity in Algebra
131,50 €
American Mathematical Society
Sivumäärä: 159 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2005, 01.08.2005 (lisätietoa)
The G-spectrum or generative complexity of a class $mathcal{C}$ of algebraic structures is the function $mathrm{G}_mathcal{C}(k)$ that counts the number of non-isomorphic models in $mathcal{C}$ that are generated by at most $k$ elements. We consider the behavior of $mathrm{G}_mathcal{C}(k)$ when $mathcal{C}$ is a locally finite equational class (variety) of algebras and $k$ is finite. We are interested in ways that algebraic properties of $mathcal{C}$ lead to upper or lower bounds on generative complexity.Some of our results give sharp upper and lower bounds so as to place a particular variety or class of varieties at a precise level in an exponential hierarchy. We say $mathcal{C}$ has many models if there exists $c>0$ such that $mathrm{G}_mathcal{C}(k) ge 2^{2^{ck}}$ for all but finitely many $k$, $mathcal{C}$ has few models if there is a polynomial $p(k)$ with $mathrm{G}_mathcal{C}(k) le 2^{p(k)}$, and $mathcal{C}$ has very few models if $mathrm{G}_mathcal{C}(k)$ is bounded above by a polynomial in $k$.Much of our work is motivated by a desire to know which locally finite varieties have few or very few models, and to discover conditions that force a variety to have many models. We present characterization theorems for a very broad class of varieties including most known and well-studied types of algebras, such as groups, rings, modules, lattices. Two main results of our work are: a full characterization of locally finite varieties omitting the tame congruence theory type 1 with very few models as the affine varieties over a ring of finite representation type, and a full characterization of finitely generated varieties omitting type 1 with few models. In particular, we show that a finitely generated variety of groups has few models if and only if it is nilpotent and has very few models if and only if it is Abelian.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Generative Complexity in Algebra
Näytä kaikki tuotetiedot
ISBN:
9780821837078
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste