SULJE VALIKKO

avaa valikko

Oshani W. Seneviratne | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Provenance in Data Science - From Data Models to Context-Aware Knowledge Graphs
Leslie F. Sikos; Oshani W. Seneviratne; Deborah L. McGuinness
Springer Nature Switzerland AG (2021)
Kovakantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Provenance in Data Science - From Data Models to Context-Aware Knowledge Graphs
Leslie F. Sikos; Oshani W. Seneviratne; Deborah L. McGuinness
Springer Nature Switzerland AG (2022)
Pehmeäkantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Provenance in Data Science - From Data Models to Context-Aware Knowledge Graphs
125,70 €
Springer Nature Switzerland AG
Sivumäärä: 110 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2021
Julkaisuvuosi: 2021, 27.04.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Advanced Information and Knowledge Processing
RDF-based knowledge graphs require additional formalisms to be fully context-aware, which is presented in this book. This book also provides a collection of provenance techniques and state-of-the-art metadata-enhanced, provenance-aware, knowledge graph-based representations across multiple application domains, in order to demonstrate how to combine graph-based data models and provenance representations.  This is important to make statements authoritative, verifiable, and reproducible, such as in biomedical, pharmaceutical, and cybersecurity applications, where the data source and generator can be just as important as the data itself.             Capturing provenance is critical to ensure sound experimental results and rigorously designed research studies for patient and drug safety, pathology reports, and medical evidence generation. Similarly, provenance is needed for cyberthreat intelligence dashboards and attack mapsthat aggregate and/or fuse heterogeneous data from disparate data sources to differentiate between unimportant online events and dangerous cyberattacks, which is demonstrated in this book. Without provenance, data reliability and trustworthiness might be limited, causing data reuse, trust, reproducibility and accountability issues.
This book primarily targets researchers who utilize knowledge graphs in their methods and approaches (this includes researchers from a variety of domains, such as cybersecurity, eHealth, data science, Semantic Web, etc.). This book collects core facts for the state of the art in provenance approaches and techniques, complemented by a critical review of existing approaches. New research directions are also provided that combine data science and knowledge graphs, for an increasingly important research topic.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Provenance in Data Science - From Data Models to Context-Aware Knowledge Graphszoom
Näytä kaikki tuotetiedot
ISBN:
9783030676803
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste