SULJE VALIKKO

avaa valikko

O. Anatole von Lilienfeld | Akateeminen Kirjakauppa

MACHINE LEARNING MEETS QUANTUM PHYSICS

Machine Learning Meets Quantum Physics
Kristof T. Schütt; Stefan Chmiela; O. Anatole von Lilienfeld; Alexandre Tkatchenko; Koji Tsuda; Klaus-Robert Müller
Springer Nature Switzerland AG (2020)
Pehmeäkantinen kirja
88,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Springer Nature Switzerland AG
Sivumäärä: 467 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2020
Julkaisuvuosi: 2020, 04.06.2020 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Physics 968
Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume.  



To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials.



 



The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context. 

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning Meets Quantum Physicszoom
Näytä kaikki tuotetiedot
ISBN:
9783030402440
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste