SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

N.V. Pogorelov | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Mathematical Aspects of Numerical Solution of Hyperbolic Systems
A.G. Kulikovskii; N.V. Pogorelov; A. Yu. Semenov
Taylor & Francis Inc (2000)
Kovakantinen kirja
261,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathematical Aspects of Numerical Solution of Hyperbolic Systems
A.G. Kulikovskii; N.V. Pogorelov; A. Yu. Semenov
Taylor & Francis Ltd (2019)
Pehmeäkantinen kirja
79,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Mathematical Aspects of Numerical Solution of Hyperbolic Systems
261,90 €
Taylor & Francis Inc
Sivumäärä: 554 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2000, 21.12.2000 (lisätietoa)
Kieli: Englanti
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena.

The authors also address a number of original "nonclassical" problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice.

This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuote on tilapäisesti loppunut ja sen saatavuus on epävarma. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Mathematical Aspects of Numerical Solution of Hyperbolic Systemszoom
Näytä kaikki tuotetiedot
ISBN:
9780849306082
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste