SULJE VALIKKO

avaa valikko

N. Mishachev | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Introduction to the h-Principle
K. Cieliebak; Y. Eliashberg; N. Mishachev
MP-AMM American Mathematical (2024)
Pehmeäkantinen kirja
96,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to the h-Principle
K. Cieliebak; Y. Eliashberg; N. Mishachev
MP-AMM American Mathematical (2024)
Kovakantinen kirja
120,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to the H-principle
Yakov Eliashberg; N. Mishachev
American Mathematical Society (2002)
Kovakantinen kirja
99,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Introduction to the h-Principle
96,20 €
MP-AMM American Mathematical
Sivumäärä: 364 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2024, 29.02.2024 (lisätietoa)
Kieli: Englanti
In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash-Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Introduction to the h-Principlezoom
Näytä kaikki tuotetiedot
ISBN:
9781470476175
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste