SULJE VALIKKO

avaa valikko

Mosab Alfaqeeh | Akateeminen Kirjakauppa

FINDING COMMUNITIES IN SOCIAL NETWORKS USING GRAPH EMBEDDINGS

Finding Communities in Social Networks Using Graph Embeddings
Mosab Alfaqeeh; David B. Skillicorn
Springer International Publishing AG (2024)
Kovakantinen kirja
138,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Finding Communities in Social Networks Using Graph Embeddings
138,50 €
Springer International Publishing AG
Sivumäärä: 177 sivua
Asu: Kovakantinen kirja
Painos: 2024 ed.
Julkaisuvuosi: 2024, 30.06.2024 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Social Networks
Community detection in social networks is an important but challenging problem. This book develops a new technique for finding communities that uses both structural similarity and attribute similarity simultaneously, weighting them in a principled way. The results outperform existing techniques across a wide range of measures, and so advance the state of the art in community detection. Many existing community detection techniques base similarity on either the structural connections among social-network users, or on the overlap among the attributes of each user. Either way loses useful information. There have been some attempts to use both structure and attribute similarity but success has been limited. We first build a large real-world dataset by crawling Instagram, producing a large set of user profiles. We then compute the similarity between pairs of users based on four qualitatively different profile properties: similarity of language used in posts, similarity of hashtags used (which requires extraction of content from them), similarity of images displayed (which requires extraction of what each image is 'about'), and the explicit connections when one user follows another. These single modality similarities are converted into graphs. These graphs have a common node set (the users) but different sets a weighted edges. These graphs are then connected into a single larger graph by connecting the multiple nodes representing the same user by a clique, with edge weights derived from a lazy random walk view of the single graphs. This larger graph can then be embedded in a geometry using spectral techniques. In the embedding, distance corresponds to dissimilarity so geometric clustering techniques can be used to find communities. The resulting communities are evaluated using the entire range of current techniques, outperforming all of them. Topic modelling is also applied to clusters to show that they genuinely represent users with similar interests. This can form the basis for applications such as online marketing, or key influence selection.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Finding Communities in Social Networks Using Graph Embeddingszoom
Näytä kaikki tuotetiedot
ISBN:
9783031609152
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste