SULJE VALIKKO

avaa valikko

Monicah Wambugu | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Deep Learning for Natural Language Processing - Solve your natural language processing problems with smart deep neural networks
Karthiek Reddy Bokka; Shubhangi Hora; Tanuj Jain; Monicah Wambugu
Packt Publishing Limited (2019)
Pehmeäkantinen kirja
49,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Practical Machine Learning with R - Define, build, and evaluate machine learning models for real-world applications
Brindha Priyadarshini Jeyaraman; Ludvig Renbo Olsen; Monicah Wambugu
Packt Publishing Limited (2019)
Pehmeäkantinen kirja
46,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning for Natural Language Processing - Solve your natural language processing problems with smart deep neural networks
49,00 €
Packt Publishing Limited
Sivumäärä: 372 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2019, 11.06.2019 (lisätietoa)
Kieli: Englanti
Gain the knowledge of various deep neural network architectures and their application areas to conquer your NLP issues.

Key Features

Gain insights into the basic building blocks of natural language processing
Learn how to select the best deep neural network to solve your NLP problems
Explore convolutional and recurrent neural networks and long short-term memory networks

Book DescriptionApplying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts off by highlighting the basic building blocks of the natural language processing domain. The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In the later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.

By the end of this book, you will not only have sound knowledge of natural language processing but also be able to select the best text pre-processing and neural network models to solve a number of NLP issues.

What you will learn

Understand various pre-processing techniques for deep learning problems
Build a vector representation of text using word2vec and GloVe
Create a named entity recognizer and parts-of-speech tagger with Apache OpenNLP
Build a machine translation model in Keras
Develop a text generation application using LSTM
Build a trigger word detection application using an attention model

Who this book is forIf you’re an aspiring data scientist looking for an introduction to deep learning in the NLP domain, this is just the book for you. Strong working knowledge of Python, linear algebra, and machine learning is a must.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 2-3 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Deep Learning for Natural Language Processing - Solve your natural language processing problems with smart deep neural networkszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste