SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Mohit Sewak | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Practical Convolutional Neural Networks - Implement advanced deep learning models using Python
Mohit Sewak; Md. Rezaul Karim; Pradeep Pujari
Packt Publishing Limited (2018)
Pehmeäkantinen kirja
47,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Reinforcement Learning - Frontiers of Artificial Intelligence
Mohit Sewak
Springer Verlag, Singapore (2019)
Kovakantinen kirja
138,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Reinforcement Learning - Frontiers of Artificial Intelligence
Mohit Sewak
Springer Verlag, Singapore (2020)
Pehmeäkantinen kirja
138,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Practical Convolutional Neural Networks - Implement advanced deep learning models using Python
47,40 €
Packt Publishing Limited
Sivumäärä: 218 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2018, 27.02.2018 (lisätietoa)
Kieli: Englanti
One stop guide to implementing award-winning, and cutting-edge CNN architectures

Key Features

Fast-paced guide with use cases and real-world examples to get well versed with CNN techniques
Implement CNN models on image classification, transfer learning, Object Detection, Instance Segmentation, GANs and more
Implement powerful use-cases like image captioning, reinforcement learning for hard attention, and recurrent attention models

Book DescriptionConvolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models.

This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.

Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision.

By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets.

What you will learn

From CNN basic building blocks to advanced concepts understand practical areas they can be applied to
Build an image classifier CNN model to understand how different components interact with each other, and then learn how to optimize it
Learn different algorithms that can be applied to Object Detection, and Instance Segmentation
Learn advanced concepts like attention mechanisms for CNN to improve prediction accuracy
Understand transfer learning and implement award-winning CNN architectures like AlexNet, VGG, GoogLeNet, ResNet and more
Understand the working of generative adversarial networks and how it can create new, unseen images

Who this book is forThis book is for data scientists, machine learning and deep learning practitioners, Cognitive and Artificial Intelligence enthusiasts who want to move one step further in building Convolutional Neural Networks. Get hands-on experience with extreme datasets and different CNN architectures to build efficient and smart ConvNet models. Basic knowledge of deep learning concepts and Python programming language is expected.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Practical Convolutional Neural Networks - Implement advanced deep learning models using Pythonzoom
Näytä kaikki tuotetiedot
ISBN:
9781788392303
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste