SULJE VALIKKO

avaa valikko

Michael Hagmann | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Validity, Reliability, and Significance - Empirical Methods for NLP and Data Science
Stefan Riezler; Michael Hagmann
Morgan & Claypool Publishers (2021)
Pehmeäkantinen kirja
98,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Validity, Reliability, and Significance - Empirical Methods for NLP and Data Science
Stefan Riezler; Michael Hagmann
Morgan & Claypool Publishers (2021)
Kovakantinen kirja
196,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Validity, Reliability, and Significance - Empirical Methods for NLP and Data Science
Stefan Riezler; Michael Hagmann
Springer International Publishing AG (2021)
Pehmeäkantinen kirja
54,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Validity, Reliability, and Significance - Empirical Methods for NLP and Data Science
Stefan Riezler; Michael Hagmann
Springer International Publishing AG (2024)
Kovakantinen kirja
40,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Validity, Reliability, and Significance - Empirical Methods for NLP and Data Science
98,20 €
Morgan & Claypool Publishers
Sivumäärä: 165 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2021, 30.12.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Human La
Empirical methods are means to answering methodological questions of empirical sciences by statistical techniques. The methodological questions addressed in this book include the problems of validity, reliability, and significance. In the case of machine learning, these correspond to the questions of whether a model predicts what it purports to predict, whether a model's performance is consistent across replications, and whether a performance difference between two models is due to chance, respectively. The goal of this book is to answer these questions by concrete statistical tests that can be applied to assess validity, reliability, and significance of data annotation and machine learning prediction in the fields of NLP and data science.

Our focus is on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows detecting circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Last, a significance test based on the likelihood ratio of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data.

This book can be used as an introduction to empirical methods for machine learning in general, with a special focus on applications in NLP and data science. The book is self-contained, with an appendix on the mathematical background on GAMs and LMEMs, and with an accompanying webpage including R code to replicate experiments presented in the book.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa. | Tilaa jouluksi viimeistään 27.11.2024. Tuote ei välttämättä ehdi jouluksi.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Validity, Reliability, and Significance - Empirical Methods for NLP and Data Sciencezoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste