Georg Baller; Michael Bsullak-Trepte; Matthias Glaese; Justin Große Feldhaus; Silvana Große Feldhaus; Andreas Günther; Han Cornelsen Verlag GmbH (2014) Kovakantinen kirja
Ralph Sluke; Rolf-Michael Preugschat; Sven Thürnau; Claudia Cavaliere; Sönke Friedrich; Andreas Pohlschmidt; Björ Mattheß Budrich (2024) Pehmeäkantinen kirja
Ulf Abraham; Matthis Kepser; Peter Christoph Kern; Michael Klant; Richard Lowe; Andreas Lutz; Klaus Maiwald; Oomen-Welke Fillibach Verlag (2012) Pehmeäkantinen kirja
Michael Waidner; Andreas Zeller; Matthias Huber; Daniel Kraschewski; Michael Backes; Jörn Müller-Quade; Eric Bodden; Kreu Fraunhofer Verlag (2013) Pehmeäkantinen kirja
Andreas Marti; Ada Kadelbach; Irmgard Scheitler; J Neijenhuis; Matthias Schneider; Alexander Deeg; Michael Meyer-Blanck Vandenhoeck and Ruprecht (2013) Pehmeäkantinen kirja
Michael Pröttel; Andreas Adelmann; Thorsten Brönner; Michael Hennemann; Marike Langhorst; Ingo Stock; Matthias Wittber Bruckmann Verlag GmbH (2015) Pehmeäkantinen kirja
Philipp S Fischinger; Andreas Gietl; Katharina Hilbig-Lugani; Axel Jakobitz; Michael Matthiessen; Martin Lohnig; Plettenbe Kohlhammer (2017) Kovakantinen kirja
Andreas Gilg; Simon Weixler; Ivonne Grill; Michael Kleine; Birgit Listl; Matthias Ludwig; Julia Singer; Sylvia Stark; St Buchner, C.C. Verlag (2018) Kovakantinen kirja
Kay Uwe Erdmann; Benjamin Heider; Andreas Hofelich; Volker Ars; Matthias Ginkel; Bianca Hövelmann; Michael Rein; Mi Weth VVW-Verlag Versicherungs. (2019) Kovakantinen kirja
Katinka Meyer; Andreas Weigelt; Matthias Simmich; Christoph Bernhardt; Michael Zajonz; Aleida Assmann; Norbert Frei; Kers L + H Verlag GmbH (2020) Kovakantinen kirja
Michael A. Matt constructs two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The second is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. The author constructs trivariate macro-elements based on the Alfeld split, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetrahedral partition. In order to obtain the macro-elements based on the Worsey-Farin split minimal determining sets for Cr macro-elements are constructed over the Clough-Tocher split of a triangle, which are more variable than those in the literature.