Kalman filter, particle filter, IMM, PDA, ITS, random sets... The number of useful object-tracking methods is exploding. But how are they related? How do they help track everything from aircraft, missiles and extra-terrestrial objects to people and lymphocyte cells? How can they be adapted to novel applications? Fundamentals of Object Tracking tells you how. Starting with the generic object-tracking problem, it outlines the generic Bayesian solution. It then shows systematically how to formulate the major tracking problems – maneuvering, multiobject, clutter, out-of-sequence sensors – within this Bayesian framework and how to derive the standard tracking solutions. This structured approach makes very complex object-tracking algorithms accessible to the growing number of users working on real-world tracking problems and supports them in designing their own tracking filters under their unique application constraints. The book concludes with a chapter on issues critical to successful implementation of tracking algorithms, such as track initialization and merging.