SULJE VALIKKO

avaa valikko

Mark Hodnett | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



R Deep Learning Essentials - A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet, 2nd Editi
Mark Hodnett; Joshua F. Wiley
Packt Publishing Limited (2018)
Pehmeäkantinen kirja
53,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning with R for Beginners - Design neural network models in R 3.5 using TensorFlow, Keras, and MXNet
Mark Hodnett; Joshua F. Wiley; Yuxi Liu (Hayden); Pablo Maldonado
Packt Publishing Limited (2019)
Pehmeäkantinen kirja
64,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
R Deep Learning Essentials - A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet, 2nd Editi
53,10 €
Packt Publishing Limited
Sivumäärä: 378 sivua
Asu: Pehmeäkantinen kirja
Painos: 2nd Revised edition
Julkaisuvuosi: 2018, 24.08.2018 (lisätietoa)
Kieli: Englanti
Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet

Key Features

Use R 3.5 for building deep learning models for computer vision and text
Apply deep learning techniques in cloud for large-scale processing
Build, train, and optimize neural network models on a range of datasets

Book DescriptionDeep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem.

This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics.

By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.

What you will learn

Build shallow neural network prediction models
Prevent models from overfitting the data to improve generalizability
Explore techniques for finding the best hyperparameters for deep learning models
Create NLP models using Keras and TensorFlow in R
Use deep learning for computer vision tasks
Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders

Who this book is forThis second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
R Deep Learning Essentials - A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet, 2nd Editizoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste