SULJE VALIKKO

avaa valikko

Marcelo G.S. Bruno | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
Marcelo G.S. Bruno
Morgan & Claypool Publishers (2013)
Pehmeäkantinen kirja
57,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
Marcelo G. S. Bruno; Marcelo G.S.
Springer International Publishing AG (2013)
Pehmeäkantinen kirja
33,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering
57,60 €
Morgan & Claypool Publishers
Sivumäärä: 99 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2013, 01.01.2013 (lisätietoa)
Kieli: Englanti
Tuotesarja: Synthesis Lectures on Signal P
In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable.

We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way.

We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network.

Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filteringzoom
Näytä kaikki tuotetiedot
ISBN:
9781627051194
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste