This book presents the proceedings of a 1996 Joint Summer Research Conference sponsored by AMS-IMS-SIAM on 'Quantization' held at Mount Holyoke College (Northampton, MA). The purpose of the conference was to bring together researchers focusing on various mathematical aspects of quantization. In the early work of Weyl and von Neumann at the beginning of the quantum era, the setting for this enterprise was operators on Hilbert space. This setting has been expanded, especially over the past decade, to involve $C^*$-algebras - noncommutative differential geometry and noncommutative harmonic analysis - as well as more general algebras and infinite-dimensional manifolds. The applications now include quantum field theory, notable conformal and topological field theories related to quantization of moduli spaces, and constructive quantum field theory of supersymmetric models and condensed matter physics (the fractional quantum Hall effect in particular).The spectrum of research interests which significantly intersects the topic of quantization is unusually broad, including, for example, pseudodifferential analysis, the representation theory of Lie groups and algebras (including infinite-dimensional ones), operator algebras and algebraic deformation theory. The papers in this collection originated with talks by the authors at the conference and represent a strong cross-section of the interests described above.