SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Manoharan Poongodi | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Federated Learning and Privacy-Preserving in Healthcare AI
Umesh Kumar Lilhore; Sarita Simaiya; Manoharan Poongodi; Vishal Dutt
IGI Global (2024)
Kovakantinen kirja
440,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Federated Learning and Privacy-Preserving in Healthcare AI
Umesh Kumar Lilhore; Sarita Simaiya; Manoharan Poongodi; Vishal Dutt
IGI Global (2024)
Pehmeäkantinen kirja
306,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Federated Learning and Privacy-Preserving in Healthcare AI
440,10 €
IGI Global
Sivumäärä: 351 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2024, 31.05.2024 (lisätietoa)
Kieli: Englanti
The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. As AI use begins to increase in healthcare, the specter of data breaches, privacy infringements, and ethical quandaries appear formidable. Patient data, a cornerstone of medical advancement, becomes susceptible to compromise, necessitating a delicate balance between innovation and safeguarding individual privacy. Existing concerns focus on the potential misuse and unauthorized access to this sensitive information, resulting in a significant obstacle to the full realization of AI's potential in healthcare. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI. For those seeking a comprehensive guide to navigate the complexities of AI in healthcare while upholding patient privacy, this reference book serves as an indispensable resource.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Federated Learning and Privacy-Preserving in Healthcare AIzoom
Näytä kaikki tuotetiedot
ISBN:
9798369318744
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste