SULJE VALIKKO

avaa valikko

Li Fuwei Li | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning Algorithms : Adversarial Robustness in Signal Processing
Fuwei Li; Lifeng Lai; Shuguang Cui
Springer (2022)
Kovakantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning Algorithms
Li Fuwei Li; Lai Lifeng Lai; Cui Shuguang Cui
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
117,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning Algorithms : Adversarial Robustness in Signal Processing
Fuwei Li; Lifeng Lai; Shuguang Cui
Springer (2023)
Pehmeäkantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning Algorithms : Adversarial Robustness in Signal Processing
125,70 €
Springer
Sivumäärä: 104 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2022, 16.11.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: Wireless Networks

This book demonstrates the optimal adversarial attacks against several important signal processing algorithms. Through presenting the optimal attacks in wireless sensor networks, array signal processing, principal component analysis, etc, the authors reveal the robustness of the signal processing algorithms against adversarial attacks. Since data quality is crucial in signal processing, the adversary that can poison the data will be a significant threat to signal processing. Therefore, it is necessary and urgent to investigate the behavior of machine learning algorithms in signal processing under adversarial attacks.

The authors in this book mainly examine the adversarial robustness of three commonly used machine learning algorithms in signal processing respectively: linear regression, LASSO-based feature selection, and principal component analysis (PCA). As to linear regression, the authors derive the optimal poisoning data sample and the optimal feature modifications, and also demonstrate the effectiveness of the attack against a wireless distributed learning system. The authors further extend the linear regression to LASSO-based feature selection and study the best strategy to mislead the learning system to select the wrong features. The authors find the optimal attack strategy by solving a bi-level optimization problem and also illustrate how this attack influences array signal processing and weather data analysis. In the end, the authors consider the adversarial robustness of the subspace learning problem. The authors examine the optimal modification strategy under the energy constraints to delude the PCA-based subspace learning algorithm.

This book targets researchers working in machine learning, electronic information, and information theory as well as advanced-level students studying these subjects. R&D engineers who are working in machine learning, adversarial machine learning, robust machine learning, and technical consultants working on the security and robustness of machine learning are likely to purchase this book as a reference guide.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning Algorithms : Adversarial Robustness in Signal Processingzoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste