SULJE VALIKKO

avaa valikko

Lee-Peng Teo | Akateeminen Kirjakauppa

WEIL-PETERSSON METRIC ON THE UNIVERSAL TEICHMULLER SPACE

Weil-Petersson Metric on the Universal Teichmuller Space
A. Takhtajan-Leon; Lee-Peng Teo
American Mathematical Society (2006)
Pehmeäkantinen kirja
80,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Weil-Petersson Metric on the Universal Teichmuller Space
80,50 €
American Mathematical Society
Sivumäärä: 119 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2006, 01.09.2006 (lisätietoa)
Kieli: Englanti
In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ - the Hilbert submanifold $T_{0}(1)$ - is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space.As an application, we derive Wolpert curvature formulas for the finite-dimensional Teichmuller spaces from the formulas for the universal Teichmuller space. We study in detail the Hilbert manifold structure on $T_{0}(1)$ and characterize points on $T_{0}(1)$ in terms of Bers and pre-Bers embeddings by proving that the Grunsky operators $B_{1}$ and $B_{4}$, associated with the points in $T_{0}(1)$ via conformal welding, are Hilbert-Schmidt. We define a 'universal Liouville action' - a real-valued function ${mathbf S}_{1}$ on $T_{0}(1)$, and prove that it is a Kahler potential of the Weil-Petersson metric on $T_{0}(1)$.We also prove that ${mathbf S}_{1}$ is $-tfrac{1}{12pi}$ times the logarithm of the Fredholm determinant of associated quasi-circle, which generalizes classical results of Schiffer and Hawley. We define the universal period mapping $hat{mathcal{P}}: T(1)rightarrowmathcal{B}(ell^{2})$ of $T(1)$ into the Banach space of bounded operators on the Hilbert space $ell^{2}$, prove that $hat{mathcal{P}}$ is a holomorphic mapping of Banach manifolds, and show that $hat{mathcal{P}}$ coincides with the period mapping introduced by Kurillov and Yuriev and Nag and Sullivan.We prove that the restriction of $hat{mathcal{P}}$ to $T_{0}(1)$ is an inclusion of $T_{0}(1)$ into the Segal-Wilson universal Grassmannian, which is a holomorphic mapping of Hilbert manifolds. We also prove that the image of the topological group $S$ of symmetric homeomorphisms of $S^{1}$ under the mapping $hat{mathcal{P}}$ consists of compact operators on $ell^{2}$. The results of this memoir were presented in our e-prints: Weil-Petersson metric on the universal Teichmuller space I. Curvature properties and Chern forms, arXiv:math.CV/0312172 (2003), and Weil-Petersson metric on the universal Teichmuller space II. Kahler potential and period mapping, arXiv:math.CV/0406408 (2004).

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Weil-Petersson Metric on the Universal Teichmuller Spacezoom
Näytä kaikki tuotetiedot
ISBN:
9780821839362
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste