SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Lee Haesung Lee | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients
Haesung Lee; Wilhelm Stannat; Gerald Trutnau
Springer (2022)
Pehmeäkantinen kirja
51,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Theory of Ito-Stochastic Differential Equations with Non-smooth Coefficients
Lee Haesung Lee; Stannat Wilhelm Stannat; Trutnau Gerald Trutnau
Springer Nature B.V. (2022)
Pehmeäkantinen kirja
118,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients
51,40 €
Springer
Sivumäärä: 126 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 28.08.2022 (lisätietoa)
Kieli: Englanti
Tuotesarja: SpringerBriefs in Probability and Mathematical Statistics
This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. 
The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. 
Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. 
Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.
We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficientszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste