The basics of differentiable manifolds, global calculus, differential geometry, and related topics constitute a core of information essential for the first or second year graduate student preparing for advanced courses and seminars in differential topology and geometry. Differentiable Manifolds is a text designed to cover this material in a careful and sufficiently detailed manner, presupposing only a good foundation in general topology, calculus, and modern algebra. This second edition contains a significant amount of new material, which, in addition to classroom use, will make it a useful reference text. Topics that can be omitted safely in a first course are clearly marked, making this edition easier to use for such a course, as well as for private study by non-specialists wishing to survey the field.
The themes of linearization, (re) integration, and global versus local calculus are emphasized throughout. Additional features include a treatment of the elements of multivariable calculus, formulated to adapt readily to the global context, an exploration of bundle theory, and a further (optional) development of Lie theory than is customary in textbooks at this level. New to the second edition is a detailed treatment of covering spaces and the fundamental group.
Students, teachers and professionals in mathematics and mathematical physics should find this a most stimulating and useful text.