SULJE VALIKKO

avaa valikko

Lavesh Babooram | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning For Network Traffic and Video Quality Analysis : Develop and Deploy Applications Using JavaScript and Node.js
Tulsi Pawan Fowdur; Lavesh Babooram
Apress (2024)
Pehmeäkantinen kirja
42,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
AI Solutions for the United Nations Sustainable Development Goals (Un Sdgs)
Tulsi Pawan Fowdur; Lavesh Babooram
Apress (2024)
Kovakantinen kirja
83,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
AI Solutions for the United Nations Sustainable Development Goals (UN SDGs)  - A Practical Approach Using JavaScript
Tulsi Pawan Fowdur; Lavesh Babooram
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2024)
Pehmeäkantinen kirja
50,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning For Network Traffic and Video Quality Analysis : Develop and Deploy Applications Using JavaScript and Node.js
42,20 €
Apress
Sivumäärä: 465 sivua
Asu: Pehmeäkantinen kirja
Painos: First Edition
Julkaisuvuosi: 2024, 20.06.2024 (lisätietoa)
Kieli: Englanti

This book offers both theoretical insights and hands-on experience in understanding and building machine learning-based Network Traffic Monitoring and Analysis (NTMA) and Video Quality Assessment (VQA) applications using JavaScript. JavaScript provides the flexibility to deploy these applications across various devices and web browsers.



 



The book begins by delving into NTMA, explaining fundamental concepts and providing an overview of existing applications and research within this domain. It also goes into the essentials of VQA and offers a survey of the latest developments in VQA algorithms. The book includes a thorough examination of machine learning algorithms that find application in both NTMA and VQA, with a specific emphasis on classification and prediction algorithms such as the Multi-Layer Perceptron and Support Vector Machine. The book also explores the software architecture of the NTMA client-server application. This architecture is meticulously developed using HTML, CSS, Node.js, and JavaScript. Practical aspects of developing the Video Quality Assessment (VQA) model using JavaScript and Java are presented. Lastly, the book provides detailed guidance on implementing a complete system model that seamlessly merges NTMA and VQA into a unified web application, all built upon a client-server paradigm.



 



By the end of the book, you will understand NTMA and VQA concepts and will be able to apply machine learning to both domains and develop and deploy your own NTMA and VQA applications using JavaScript and Node.js.



 



What You Will Learn




  • What are the fundamental concepts, existing applications, and research on NTMA?

  • What are the existing software and current research trends in VQA?

  • Which machine learning algorithms are used in NTMA and VQA?

  • How do you develop NTMA and VQA web-based applications using JavaScript, HTML, and Node.js?



 



Who This Book Is For



Software professionals and machine learning engineers involved in the fields of networking and telecommunications



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning For Network Traffic and Video Quality Analysis : Develop and Deploy Applications Using JavaScript and Node.jszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste