SULJE VALIKKO

avaa valikko

Kumar Reddy Cheepati | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Practical Guide to Machine Learning, NLP, and Generative AI: Libraries, Algorithms, and Applications
T. Mariprasath; Kumar Reddy Cheepati; Marco Rivera
River Publishers (2024)
Pehmeäkantinen kirja
78,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Design of Green Liquid Dielectrics for Transformers: An Experimental Approach - Biodegradable Insulating Materials for Transform
T. Mariprasath; Victor Kirubakaran; Perumal Saraswathi; Reddy Kumar Cheepati; Prakasha Kunkanadu Rajappa
River Publishers (2024)
Kovakantinen kirja
134,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Practical Guide to Machine Learning, NLP, and Generative AI: Libraries, Algorithms, and Applications
78,50 €
River Publishers
Sivumäärä: 160 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2024, 23.12.2024 (lisätietoa)
Kieli: Englanti
This is an essential resource for beginners and experienced practitioners in machine learning. This comprehensive guide covers a broad spectrum of machine learning topics, starting with an in-depth exploration of popular machine learning libraries. Readers will gain a thorough understanding of Scikit-learn, TensorFlow, PyTorch, Keras, and other pivotal libraries like XGBoost, LightGBM, and CatBoost, which are integral for efficient model development and deployment.

The book delves into various neural network architectures, providing readers with a solid foundation in understanding and applying these models. Beginning with the basics of the Perceptron and its application in digit classification, it progresses to more complex structures such as multilayer perceptrons for financial forecasting, radial basis function networks for air quality prediction, and convolutional neural networks (CNNs) for image classification. Additionally, the book covers recurrent neural networks (RNNs) and their variants like long short-term memory (LSTM) and gated recurrent units (GRUs), which are crucial for time-series analysis and sequential data applications.

Supervised machine learning algorithms are meticulously explained, with practical examples to illustrate their application. The book covers logistic regression and its use in predicting sports outcomes, decision trees for plant classification, random forests for traffic prediction, and support vector machines for house price prediction. Gradient boosting machines and their applications in genomics, AdaBoost for bioinformatics data classification, and extreme gradient boosting (XGBoost) for churn prediction are also discussed, providing readers with a robust toolkit for various predictive tasks.

Unsupervised learning algorithms are another significant focus of the book, introducing readers to techniques for uncovering hidden patterns in data. Hierarchical clustering for gene expression data analysis, principal component analysis (PCA) for climate predictions, and singular value decomposition (SVD) for signal denoising are thoroughly explained. The book also explores applications like robot navigation and network security, demonstrating the versatility of these techniques.

Natural language processing (NLP) is comprehensively covered, highlighting its fundamental concepts and various applications. The book discusses the overview of NLP, its fundamental concepts, and its diverse applications such as chatbots, virtual assistants, clinical NLP applications, and social media analytics. Detailed sections on text pre-processing, syntactic analysis, machine translation, text classification, named entity recognition, and sentiment analysis equip readers with the knowledge to build sophisticated NLP models.

The final chapters of the book explore generative AI, including generative adversarial networks (GANs) for image generation, variational autoencoders for vibrational encoder training, and autoregressive models for time series forecasting. It also delves into Markov chain models for text generation, Boltzmann machines for pattern recognition, and deep belief networks for financial forecasting. Special attention is given to the application of recurrent neural networks (RNNs) for generation tasks, such as wind power plant predictions and battery range prediction, showcasing the practical implementations of generative AI in various fields.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! 01.09.2024 Kustantajan ilmoittama saatavuuspäivä on ylittynyt, selvitämme saatavuutta. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Practical Guide to Machine Learning, NLP, and Generative AI: Libraries, Algorithms, and Applications
Näytä kaikki tuotetiedot
ISBN:
9788770046534
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste