B. J. Manaster; Catherine C. Roberts; Carol L. Andrews; Cheryl A. Petersilge; Julia Crim; Zehava Sadka Rosenberg; Miller Lippincott Williams & Wilkins (2006) Kovakantinen kirja
O'Reilly Media Sivumäärä: 194 sivua Asu: Pehmeäkantinen kirja Julkaisuvuosi: 2017, 01.08.2017 (lisätietoa) Kieli: Englanti
Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem. You'll discover how tidy data principles can make text mining easier, more effective, and consistent by employing tools already in wide use. Text Mining with R shows you how to manipulate, summarize, and visualize the characteristics of text, sentiment analysis, tf-idf, and topic modeling. Along with tidy data methods, you'll also examine several beginning-to-end tidy text analyses on data sources from Twitter to NASA datasets. These analyses bring together multiple text mining approaches covered in the book. Get real-world examples for implementing text mining using tidy R package Understand natural language processing concepts like sentiment analysis, tf-idf, and topic modeling Learn how to analyze unstructured, text-heavy data using R language and ecosystem