SULJE VALIKKO

avaa valikko

Juan Evangelista Trinidad Segovia | Akateeminen Kirjakauppa

FRACTAL DIMENSION FOR FRACTAL STRUCTURES - WITH APPLICATIONS TO FINANCE

Fractal Dimension for Fractal Structures - With Applications to Finance
Manuel Fernández-Martínez; Juan Luis García Guirao; Miguel Ángel Sánchez-Granero; Juan Evangelista Trinidad Segovia
Springer Nature Switzerland AG (2019)
Kovakantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fractal Dimension for Fractal Structures - With Applications to Finance
97,90 €
Springer Nature Switzerland AG
Sivumäärä: 204 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2019
Julkaisuvuosi: 2019, 08.05.2019 (lisätietoa)
Kieli: Englanti
Tuotesarja: SEMA SIMAI Springer Series 19
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts.



In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithmsfor properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.

This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Fractal Dimension for Fractal Structures - With Applications to Financezoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste