SULJE VALIKKO

avaa valikko

Juan E. Martinez-Legaz | Akateeminen Kirjakauppa

GENERALIZED CONVEXITY AND GENERALIZED MONOTONICITY - PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON GENERALIZED CONVEXITY/MON

Generalized Convexity and Generalized Monotonicity - Proceedings of the 6th International Symposium on Generalized Convexity/Mon
Nicolas Hadjisavvas; Juan E. Martinez-Legaz; Jean-Paul Penot
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG (2001)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Generalized Convexity and Generalized Monotonicity - Proceedings of the 6th International Symposium on Generalized Convexity/Mon
97,90 €
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Sivumäärä: 410 sivua
Asu: Pehmeäkantinen kirja
Painos: 2001
Julkaisuvuosi: 2001, 10.04.2001 (lisätietoa)
Kieli: Englanti
Tuotesarja: Lecture Notes in Economics and Mathematical Systems 502
A famous saying (due toHerriot)definescultureas "what remainswhen everythingisforgotten ". One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone- variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .
Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc- tions,withapplicationsto partialdifferentialequations ,variationalinequal- ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Generalized Convexity and Generalized Monotonicity - Proceedings of the 6th International Symposium on Generalized Convexity/Monzoom
Näytä kaikki tuotetiedot
ISBN:
9783540418061
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste