SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Joseph Heyse | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 4 tuotetta
Haluatko tarkentaa hakukriteerejä?



Missing and Modified Data in Nonparametric Estimation - With R Examples
Jie Chen; Joseph Heyse; Tze Leung Lai
Taylor & Francis Ltd (2018)
Kovakantinen kirja
130,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Medical Product Safety Evaluation - Biological Models and Statistical Methods
Jie Chen; Joseph Heyse; Tze Leung Lai
Taylor & Francis Inc (2018)
Kovakantinen kirja
138,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Medical Product Safety Evaluation - Biological Models and Statistical Methods
Jie Chen; Joseph Heyse; Tze Leung Lai
Taylor & Francis Ltd (2020)
Pehmeäkantinen kirja
65,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Statistical Omics
Xiaohua Douglas Zhang; Joseph Heyse
Apple Academic Press Inc. (2023)
Kovakantinen kirja
140,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Missing and Modified Data in Nonparametric Estimation - With R Examples
130,10 €
Taylor & Francis Ltd
Sivumäärä: 448 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2018, 12.03.2018 (lisätietoa)
Kieli: Englanti
This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications.

The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study.

The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information.

The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively.

Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Missing and Modified Data in Nonparametric Estimation - With R Exampleszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste