SULJE VALIKKO

avaa valikko

Jamal Amani Rad | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines : Theory, Algorithms and Applications
Jamal Amani Rad (ed.); Kourosh Parand (ed.); Snehashish Chakraverty (ed.)
Springer (2023)
Kovakantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines : Theory, Algorithms and Applications
Jamal Amani Rad (ed.); Kourosh Parand (ed.); Snehashish Chakraverty (ed.)
Springer (2024)
Pehmeäkantinen kirja
125,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Dimensionality Reduction in Machine Learning
Jamal Amani Rad; Snehashish Chakraverty; Kourosh Parand
Elsevier Science & Technology (2025)
Pehmeäkantinen kirja
162,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines : Theory, Algorithms and Applications
125,70 €
Springer
Sivumäärä: 305 sivua
Asu: Kovakantinen kirja
Painos: 2023
Julkaisuvuosi: 2023, 19.03.2023 (lisätietoa)
Kieli: Englanti
Tuotesarja: Industrial and Applied Mathematics

This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions—Chebyshev, Legendre, Gegenbauer, and Jacobi—are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.



On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines : Theory, Algorithms and Applicationszoom
Näytä kaikki tuotetiedot
ISBN:
9789811965524
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste