SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Jakub M. Tomczak | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Deep Generative Modeling
Jakub M. Tomczak
Springer Nature Switzerland AG (2022)
Kovakantinen kirja
68,90 €
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Generative Modeling
Jakub M. Tomczak
Springer Nature Switzerland AG (2023)
Pehmeäkantinen kirja
49,60 €
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Generative Modeling
Jakub M. Tomczak
Springer International Publishing AG (2024)
Kovakantinen kirja
59,30 €
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Systems Science - Proceedings of the International Conference on Systems Science 2013 (ICSS 2013)
Jerzy SwiÄ tek; Adam Grzech; PaweÅ‚ SwiÄ tek; Jakub M. Tomczak
Springer International Publishing AG (2013)
Pehmeäkantinen kirja
172,80 €
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Advances in Systems Science : Proceedings of the International Conference on Systems Science 2016 (ICSS 2016)
Jerzy ÅšwiÄ tek (ed.); Jakub M. Tomczak (ed.)
Springer (2016)
Pehmeäkantinen kirja
129,90 €
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Generative Modeling
68,90 €
Springer Nature Switzerland AG
Sivumäärä: 197 sivua
Asu: Kovakantinen kirja
Painos: 2022 ed.
Julkaisuvuosi: 2022, 19.02.2022 (lisätietoa)
Kieli: Englanti
This textbook tackles the problem of formulating AI systems by combining probabilistic modeling and deep learning. Moreover, it goes beyond typical predictive modeling and brings together supervised learning and unsupervised learning. The resulting paradigm, called deep generative modeling, utilizes the generative perspective on perceiving the surrounding world. It assumes that each phenomenon is driven by an underlying generative process that defines a joint distribution over random variables and their stochastic interactions, i.e., how events occur and in what order. The adjective "deep" comes from the fact that the distribution is parameterized using deep neural networks. There are two distinct traits of deep generative modeling. First, the application of deep neural networks allows rich and flexible parameterization of distributions. Second, the principled manner of modeling stochastic dependencies using probability theory ensures rigorous formulation and prevents potential flaws in reasoning. Moreover, probability theory provides a unified framework where the likelihood function plays a crucial role in quantifying uncertainty and defining objective functions.



Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics in machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It will appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics, who wish to become familiar with deep generative modeling. To engage the reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on github.



The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

Loppuunmyyty
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Deep Generative Modelingzoom
Näytä kaikki tuotetiedot
ISBN:
9783030931575
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste