SULJE VALIKKO

avaa valikko

Ivana Isgum | Akateeminen Kirjakauppa

INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING - THIRD INTERNATIONAL WORKSHOP, IMIMIC 2020, SECOND

Interpretable and Annotation-Efficient Learning for Medical Image Computing - Third International Workshop, iMIMIC 2020, Second
Jaime Cardoso; Hien Van Nguyen; Nicholas Heller; Pedro Henriques Abreu; Ivana Isgum; Wilson Silva; Ricardo Cruz; Pereira
Springer Nature Switzerland AG (2020)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Interpretable and Annotation-Efficient Learning for Medical Image Computing - Third International Workshop, iMIMIC 2020, Second
49,60 €
Springer Nature Switzerland AG
Sivumäärä: 292 sivua
Asu: Pehmeäkantinen kirja
Painos: 1st ed. 2020
Julkaisuvuosi: 2020, 04.10.2020 (lisätietoa)
Kieli: Englanti
Tuotesarja: Image Processing, Computer Vision, Pattern Recognition, and Graphics
This book constitutes the refereed joint proceedings of the Third International Workshop on Interpretability of Machine Intelligence in Medical Image Computing, iMIMIC 2020, the Second International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2020, and the 5th International Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis, LABELS 2020, held in conjunction with the 23rd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.



The 8 full papers presented at iMIMIC 2020, 11 full papers to MIL3ID 2020, and the 10 full papers presented at LABELS 2020 were carefully reviewed and selected from 16 submissions to iMIMIC, 28 to MIL3ID, and 12 submissions to LABELS. The iMIMIC papers focus on introducing the challenges and opportunities related to the topic of interpretability of machine learning systems in the context of medical imaging and computer assisted intervention. MIL3ID deals with best practices in medical image learning with label scarcity and data imperfection. The LABELS papers present a variety of approaches for dealing with a limited number of labels, from semi-supervised learning to crowdsourcing.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Interpretable and Annotation-Efficient Learning for Medical Image Computing - Third International Workshop, iMIMIC 2020, Second
Näytä kaikki tuotetiedot
ISBN:
9783030611651
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste