SULJE VALIKKO

avaa valikko

Ivan Leonidovich Garanovich | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Kyle Robert Harrison; Saber Elsayed; Ivan Leonidovich Garanovich; Terence Weir; Sharon G. Boswell; Ruhul Amin Sarker
Springer Nature Switzerland AG (2021)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Kyle Robert Harrison; Saber Elsayed; Ivan Leonidovich Garanovich; Terence Weir; Sharon G. Boswell; Ruhul Amin Sarker
Springer Nature Switzerland AG (2022)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
129,90 €
Springer Nature Switzerland AG
Sivumäärä: 214 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2022
Julkaisuvuosi: 2021, 14.11.2021 (lisätietoa)
Kieli: Englanti
Tuotesarja: Adaptation, Learning, and Optimization 26
This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times.

It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes.



This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Evolutionary and Memetic Computing for Project Portfolio Selection and Schedulingzoom
Näytä kaikki tuotetiedot
ISBN:
9783030883140
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste