SULJE VALIKKO

avaa valikko

Ian Pratt-Hartmann | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Fragments of First-Order Logic
Ian Pratt-Hartmann
Oxford University Press (2023)
Kovakantinen kirja
128,00
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Handbook of Spatial Logics
Marco Aiello; Ian Pratt-Hartmann; Johan van Benthem
Springer-Verlag New York Inc. (2007)
Kovakantinen kirja
258,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Handbook of Spatial Logics
Marco Aiello; Ian Pratt-Hartmann; Johan van Benthem
Springer (2016)
Pehmeäkantinen kirja
258,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Fragments of First-Order Logic
128,00 €
Oxford University Press
Sivumäärä: 672 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2023, 30.03.2023 (lisätietoa)
Kieli: Englanti
Tuotesarja: Oxford Logic Guides
A sentence of first-order logic is satisfiable if it is true in some structure, and finitely satisfiable if it is true in some finite structure. The question arises as to whether there exists an algorithm for determining whether a given formula of first-order logic is satisfiable, or indeed finitely satisfiable. This question was answered negatively in 1936 by Church and Turing (for satisfiability) and in 1950 by Trakhtenbrot (for finite satisfiability).In contrast, the satisfiability and finite satisfiability problems are algorithmically solvable for restricted subsets---or, as we say, fragments---of first-order logic, a fact which is today of considerable interest in Computer Science. This book provides an up-to-date survey of the principal axes of research, charting the limits of decision in first-order logic and exploring the trade-off between expressive power and complexity of reasoning.

Divided into three parts, the book considers for which fragments of first-order logic there is an effective method for determining satisfiability or finite satisfiability. Furthermore, if these problems are decidable for some fragment, what is their computational complexity? Part I focusses on fragments defined by restricting the set of available formulas. Topics covered include the Aristotelian syllogistic and its relatives, the two-variable fragment, the guarded fragment, the quantifier-prefix fragments and the fluted fragment. Part II investigates logics with counting quantifiers. Starting with De Morgan's numerical generalization of the Aristotelian syllogistic, we proceed to the two-variable fragment with counting quantifiers and its guarded subfragment, explaining the applications of the latter to the problem of query answering in structured data. Part III concerns logics characterized by semantic constraints, limiting the available interpretations of certain predicates. Taking propositional modal logic and graded modal logic as our cue, we return to the satisfiability problem for two-variable first-order logic and its relatives, but this time with certain distinguished binary predicates constrained to be interpreted as equivalence relations or transitive relations. The work finishes, slightly breaching the bounds of first-order logic proper, with a chapter on logics interpreted over trees.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! 18.11.2022 Kustantajan ilmoittama saatavuuspäivä on ylittynyt, selvitämme saatavuutta. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Fragments of First-Order Logiczoom
Näytä kaikki tuotetiedot
ISBN:
9780192867964
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste