SULJE VALIKKO

avaa valikko

Huaqing Hao | Akateeminen Kirjakauppa

GRAPH NEURAL NETWORK METHODS AND APPLICATIONS IN SCENE UNDERSTANDING

Graph Neural Network Methods and Applications in Scene Understanding
Weibin Liu; Huaqing Hao; Hui Wang; Zhiyuan Zou; Weiwei Xing
Springer Verlag, Singapore (2025)
Kovakantinen kirja
152,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Graph Neural Network Methods and Applications in Scene Understanding
152,40 €
Springer Verlag, Singapore
Sivumäärä: 219 sivua
Asu: Kovakantinen kirja
Painos: 2025 ed.
Julkaisuvuosi: 2025, 04.01.2025 (lisätietoa)
Kieli: Englanti
The book focuses on graph neural network methods and applications for scene understanding. Graph Neural Network is an important method for graph-structured data processing, which has strong capability of graph data learning and structural feature extraction. Scene understanding is one of the research focuses in computer vision and image processing, which realizes semantic segmentation and object recognition of image or video. In this book, the algorithm, system design and performance evaluation of scene understanding based on graph neural networks have been studied. First, the book elaborates the background and basic concepts of graph neural network and scene understanding, then introduces the operation mechanism and key methodological foundations of graph neural network. The book then comprehensively explores the implementation and architectural design of graph neural networks for scene understanding tasks, including scene parsing, human parsing, and video object segmentation. The aim of this book is to provide timely coverage of the latest advances and developments in graph neural networks and their applications to scene understanding, particularly for readers interested in research and technological innovation in machine learning, graph neural networks and computer vision. Features of the book include self-supervised feature fusion based graph convolutional network is designed for scene parsing, structure-property based graph representation learning is developed for human parsing, dynamic graph convolutional network based on multi-label learning is designed for human parsing, and graph construction and graph neural network with transformer are proposed for video object segmentation.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tulossa! Tuote ilmestyy 25.01.2025. Voit tehdä tilauksen heti ja toimitamme tuotteen kun saamme sen varastoomme. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Graph Neural Network Methods and Applications in Scene Understandingzoom
Näytä kaikki tuotetiedot
ISBN:
9789819799329
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste