SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Harold Malcolm Hudson | Akateeminen Kirjakauppa

LIKELIHOOD METHODS IN SURVIVAL ANALYSIS - WITH R EXAMPLES

Likelihood Methods in Survival Analysis - With R Examples
Jun Ma; Annabel Webb; Harold Malcolm Hudson
Taylor & Francis Inc (2024)
Kovakantinen kirja
128,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Likelihood Methods in Survival Analysis - With R Examples
128,50 €
Taylor & Francis Inc
Sivumäärä: 384 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2024, 01.10.2024 (lisätietoa)
Kieli: Englanti
Many conventional survival analysis methods, such as the Kaplan-Meier method for survival function estimation and the partial likelihood method for Cox model regression coefficients estimation, were developed under the assumption that survival times are subject to right censoring only. However, in practice, survival time observations may include interval-censored data, especially when the exact time of the event of interest cannot be observed. When interval-censored observations are present in a survival dataset, one generally needs to consider likelihood-based methods for inference. If the survival model under consideration is fully parametric, then likelihood-based methods impose neither theoretical nor computational challenges. However, if the model is semi-parametric, there will be difficulties in both theoretical and computational aspects.

Likelihood Methods in Survival Analysis: With R Examples explores these challenges and provides practical solutions. It not only covers conventional Cox models where survival times are subject to interval censoring, but also extends to more complicated models, such as stratified Cox models, extended Cox models where time-varying covariates are present, mixture cure Cox models, and Cox models with dependent right censoring. The book also discusses non-Cox models, particularly the additive hazards model and parametric log-linear models for bivariate survival times where there is dependence among competing outcomes.

Features



Provides a broad and accessible overview of likelihood methods in survival analysis
Covers a wide range of data types and models, from the semi-parametric Cox model with interval censoring through to parametric survival models for competing risks
Includes many examples using real data to illustrate the methods
Includes integrated R code for implementation of the methods
Supplemented by a GitHub repository with datasets and R code

The book will make an ideal reference for researchers and graduate students of biostatistics, statistics, and data science, whose interest in survival analysis extend beyond applications. It offers useful and solid training to those who wish to enhance their knowledge in the methodology and computational aspects of biostatistics.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Likelihood Methods in Survival Analysis - With R Exampleszoom
Näytä kaikki tuotetiedot
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste