SULJE VALIKKO

avaa valikko

Halperin Igor Halperin | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning in Finance : From Theory to Practice
Matthew F. Dixon; Igor Halperin; Paul Bilokon
Springer (2020)
Kovakantinen kirja
107,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Finance : From Theory to Practice
Matthew F. Dixon; Igor Halperin; Paul Bilokon
Springer (2021)
Pehmeäkantinen kirja
78,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Finance
Dixon Matthew F. Dixon; Halperin Igor Halperin; Bilokon Paul Bilokon
Springer Nature B.V. (2020)
Pehmeäkantinen kirja
116,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Design of Optimal Feedback for Structural Control
Ido Halperin; Grigory Agranovich; Yuri Ribakov
Taylor & Francis Ltd (2021)
Kovakantinen kirja
187,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Design of Optimal Feedback for Structural Control
Ido Halperin; Grigory Agranovich; Yuri Ribakov
Taylor & Francis Ltd (2023)
Pehmeäkantinen kirja
75,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning in Finance : From Theory to Practice
107,50 €
Springer
Sivumäärä: 548 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2020, 02.07.2020 (lisätietoa)
Kieli: Englanti

This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance.



Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesianand frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likelyto emerge as important methodologies for machine learning in finance.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning in Finance : From Theory to Practicezoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste