SULJE VALIKKO

avaa valikko

Höglund Henrik | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Detecting Earnings Management Using Neural Networks Ekonomi och samhälle nr 221
Höglund Henrik
Hanken Svenska handelshögskolan (2010)
61,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Ett engagemang för alla : guide för ökad tillgänglighet
Vanja Höglund; Joel Ahlgren (fotog.); Alexis Brown (fotog.); Bruno Nascimento (fotog.); Henrik Waardahl (fotog.)
Forum Idéburna organisationer med social inriktning (2019)
Pehmeäkantinen kirja
8,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Balender
Elin Berg; Rebecca Envall Berglund; Calle Helmersson; Henrik Högblom; Albin Isaksson
BoD (2020)
Kierreselkäinen
13,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Detecting Earnings Management Using Neural Networks Ekonomi och samhälle nr 221
61,60 €
Hanken Svenska handelshögskolan
Sivumäärä: 115 sivua
Julkaisuvuosi: 2010 (lisätietoa)
Kieli: Englanti

Detecting Earnings Management Using Neural Networks. Trying to balance between relevant and reliable accounting data, generally accepted accounting principles (GAAP) allow, to some extent, the company management to use their judgment and to make subjective assessments when preparing financial statements. The opportunistic use of the discretion in financial reporting is called earnings management. There have been a considerable number of suggestions of methods for detecting accrual based earnings management. A majority of these methods are based on linear regression. The problem with using linear regression is that a linear relationship between the dependent variable and the independent variables must be assumed. However, previous research has shown that the relationship between accruals and some of the explanatory variables, such as company performance, is non-linear. An alternative to linear regression, which can handle non-linear relationships, is neural networks. The type of neural network used in this study is the feed-forward back-propagation neural network. Three neural network-based models are compared with four commonly used linear regression-based earnings management detection models. All seven models are based on the earnings management detection model presented by Jones (1991). The performance of the models is assessed in three steps. First, a random data set of companies is used. Second, the discretionary accruals from the random data set are ranked according to six different variables. The discretionary accruals in the highest and lowest quartiles for these six variables are then compared. Third, a data set containing simulated earnings management is used. Both expense and revenue manipulation ranging between -5% and 5% of lagged total assets is simulated. Furthermore, two neural network-based models and two linear regression-based models are used with a data set containing financial statement data from 110 failed companies. Overall, the results show that the linear regression-based models, except for the model using a piecewise linear approach, produce biased estimates of discretionary accruals. The neural network-based model with the original Jones model variables and the neural network-based model augmented with ROA as an independent variable, however, perform well in all three steps. Especially in the second step, where the highest and lowest quartiles of ranked discretionary accruals are examined, the neural network-based model augmented with ROA as an independent variable outperforms the other models.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-2 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Detecting Earnings Management Using Neural Networks Ekonomi och samhälle nr 221
Näytä kaikki tuotetiedot
ISBN:
9789522321084
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste