SULJE VALIKKO

avaa valikko

Guy Gilboa | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Nonlinear Eigenproblems in Image Processing and Computer Vision
Guy Gilboa
Springer International Publishing AG (2018)
Kovakantinen kirja
117,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Nonlinear Eigenproblems in Image Processing and Computer Vision
Guy Gilboa
Springer Nature Switzerland AG (2019)
Pehmeäkantinen kirja
117,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Latent Modes of Nonlinear Flows: A Koopman Theory Analysis
Ido Cohen; Guy Gilboa
Cambridge University Press (2023)
Pehmeäkantinen kirja
21,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Nonlinear Eigenproblems in Image Processing and Computer Vision
117,20 €
Springer International Publishing AG
Sivumäärä: 172 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2018
Julkaisuvuosi: 2018, 17.04.2018 (lisätietoa)
Kieli: Englanti
Tuotesarja: Advances in Computer Vision and Pattern Recognition
This unique text/reference presents a fresh look at nonlinear processing through nonlinear eigenvalue analysis, highlighting how one-homogeneous convex functionals can induce nonlinear operators that can be analyzed within an eigenvalue framework. The text opens with an introduction to the mathematical background, together with a summary of classical variational algorithms for vision. This is followed by a focus on the foundations and applications of the new multi-scale representation based on non-linear eigenproblems. The book then concludes with a discussion of new numerical techniques for finding nonlinear eigenfunctions, and promising research directions beyond the convex case.

Topics and features: introduces the classical Fourier transform and its associated operator and energy, and asks how these concepts can be generalized in the nonlinear case; reviews the basic mathematical notion, briefly outlining the use of variational and flow-based methods to solve image-processingand computer vision algorithms; describes the properties of the total variation (TV) functional, and how the concept of nonlinear eigenfunctions relate to convex functionals; provides a spectral framework for one-homogeneous functionals, and applies this framework for denoising, texture processing and image fusion; proposes novel ways to solve the nonlinear eigenvalue problem using special flows that converge to eigenfunctions; examines graph-based and nonlocal methods, for which a TV eigenvalue analysis gives rise to strong segmentation, clustering and classification algorithms; presents an approach to generalizing the nonlinear spectral concept beyond the convex case, based on pixel decay analysis; discusses relations to other branches of image processing, such as wavelets and dictionary based methods.

This original work offers fascinating new insights into established signal processing techniques, integrating deep mathematical concepts from a range of different fields, which will be of great interest to all researchers involved with image processing and computer vision applications, as well as computations for more general scientific problems.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Nonlinear Eigenproblems in Image Processing and Computer Visionzoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste