SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Gustau Camps-Valls | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 3 tuotetta
Haluatko tarkentaa hakukriteerejä?



Kernel Methods for Remote Sensing Data Analysis
Gustau Camps-Valls; Lorenzo Bruzzone
John Wiley & Sons Inc (2009)
Kovakantinen kirja
127,20
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Deep Learning for the Earth Sciences - A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences
Gustau Camps-Valls; Devis Tuia; Xiao Xiang Zhu; Markus Reichstein
John Wiley & Sons Inc (2021)
Kovakantinen kirja
132,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Digital Signal Processing with Kernel Methods
Jose Luis Rojo-Alvarez; Manel Martinez-Ramon; Jordi Munoz-Mari; Gustau Camps-Valls
John Wiley & Sons Inc (2018)
Kovakantinen kirja
128,40
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Kernel Methods for Remote Sensing Data Analysis
127,20 €
John Wiley & Sons Inc
Sivumäärä: 434 sivua
Asu: Kovakantinen kirja
Julkaisuvuosi: 2009, 23.10.2009 (lisätietoa)
Kieli: Englanti
Kernel methods have long been established as effective techniques in the framework of machine learning and pattern recognition, and have now become the standard approach to many remote sensing applications. With algorithms that combine statistics and geometry, kernel methods have proven successful  across many different domains related to the analysis of images of the Earth acquired from airborne and satellite sensors, including natural resource control, detection and monitoring of anthropic infrastructures (e.g. urban areas), agriculture inventorying, disaster prevention and damage assessment, and anomaly and target detection.  

Presenting the theoretical foundations of kernel methods (KMs) relevant to the remote sensing domain, this book serves as a practical guide to the design and implementation of these methods. Five distinct parts present state-of-the-art research related to remote sensing based on the recent advances in kernel methods, analysing the related methodological and practical challenges:



Part I introduces the key concepts of machine learning for remote sensing, and the theoretical and practical foundations of kernel methods.
Part II explores supervised image classification including Super Vector Machines (SVMs), kernel discriminant analysis, multi-temporal image classification, target detection with kernels, and Support Vector Data Description (SVDD) algorithms for anomaly detection.
Part III looks at semi-supervised classification with transductive SVM approaches for hyperspectral image classification and kernel mean data classification.
Part IV examines regression and model inversion, including the concept of a kernel unmixing algorithm for hyperspectral imagery, the theory and methods for quantitative remote sensing inverse problems with kernel-based equations, kernel-based BRDF (Bidirectional Reflectance Distribution Function), and temperature retrieval KMs. 
Part V deals with kernel-based feature extraction and provides a review of the principles of several multivariate analysis methods and their kernel extensions.

This book is aimed at engineers, scientists and researchers involved in remote sensing data processing, and also those working within machine learning and pattern recognition.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Kernel Methods for Remote Sensing Data Analysis
Näytä kaikki tuotetiedot
ISBN:
9780470722114
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste