SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Grant Humphries | Akateeminen Kirjakauppa

MACHINE LEARNING FOR ECOLOGY AND SUSTAINABLE NATURAL RESOURCE MANAGEMENT

Machine Learning for Ecology and Sustainable Natural Resource Management
Grant Humphries; Dawn R. Magness; Falk Huettmann
Springer International Publishing AG (2018)
Kovakantinen kirja
196,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning for Ecology and Sustainable Natural Resource Management
196,80 €
Springer International Publishing AG
Sivumäärä: 441 sivua
Asu: Kovakantinen kirja
Painos: 1st ed. 2018
Julkaisuvuosi: 2018, 13.11.2018 (lisätietoa)
Kieli: Englanti
Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often “messy” and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood.  When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning for Ecology and Sustainable Natural Resource Managementzoom
Näytä kaikki tuotetiedot
ISBN:
9783319969763
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste