SULJE VALIKKO

avaa valikko

George Kamberov | Akateeminen Kirjakauppa

QUATERNIONS, SPINORS, AND SURFACES

Quaternions, Spinors, and Surfaces
George Kamberov; Peter Norman; Ulrich Pinkall
American Mathematical Society (2002)
Pehmeäkantinen kirja
115,10
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Quaternions, Spinors, and Surfaces
115,10 €
American Mathematical Society
Sivumäärä: 152 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2002, 15.09.2002 (lisätietoa)
Many problems in pure and applied mathematics boil down to determining the shape of a surface in space or constructing surfaces with prescribed geometric properties. These problems range from classical problems in geometry, elasticity, and capillarity to problems in computer vision, medical imaging, and graphics. There has been a sustained effort to understand these questions, but many problems remain open or only partially solved. These include determining the shape of a surface from its metric and mean curvature (Bonnet's problem), determining an immersion from the projectivised Gauss map (Christoffel's problem) and its applications to the computer vision problem on recovering shape from shading, the construction of surfaces with prescribed curvature properties, constructing extremal surfaces and interfaces, and representing surface deformations.This book studies these questions by presenting a theory applying to both global and local questions and emphasizing conformal immersions rather than isometric immersions.
The book offers: a unified and comprehensive presentation of the quaternionic and spinor approach to the theory of surface immersions in three and four dimensional space; new geometric invariants of surfaces in space and new open problems; a new perspective and new results on the classical geometric problems of surface and surface shape recognition and surface representation; a source of problems to motivate research and dissertations; applications in computer vision and computer graphics; and proofs of many results presented by the authors at colloquia, conferences, and congresses over the past two years.This book describes how to use quaternions and spinors to study conformal immersions of Riemann surfaces into $Bbb R^3$. The first part develops the necessary quaternionic calculus on surfaces, its application to surface theory and the study of conformal immersions and spinor transforms. The integrability conditions for spinor transforms lead naturally to Dirac spinors and their application to conformal immersions.
The second part presents a complete spinor calculus on a Riemann surface, the definition of a conformal Dirac operator, and a generalized Weierstrass representation valid for all surfaces. This theory is used to investigate first, to what extent a surface is determined by its tangent plane distribution, and second, to what extent curvature determines the shape. The book is geared toward graduate students and research mathematicians interested in differential geometry and geometric analysis and its applications, computer science, computer vision, and computer graphics.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tuotteella on huono saatavuus ja tuote toimitetaan hankintapalvelumme kautta. Tilaamalla tämän tuotteen hyväksyt palvelun aloittamisen. Seuraa saatavuutta.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Quaternions, Spinors, and Surfaces
Näytä kaikki tuotetiedot
ISBN:
9780821819289
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste