SULJE VALIKKO

avaa valikko

Fujiwara Hidenori Fujiwara | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 5 tuotetta
Haluatko tarkentaa hakukriteerejä?



Harmonic Analysis on Exponential Solvable Lie Groups
Hidenori Fujiwara; Jean Ludwig
Springer Verlag, Japan (2014)
Kovakantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Harmonic Analysis on Exponential Solvable Lie Groups
Hidenori Fujiwara; Jean Ludwig
Springer (2016)
Pehmeäkantinen kirja
97,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Representation Theory of Solvable Lie Groups and Related Topics
Ali Baklouti; Hidenori Fujiwara; Jean Ludwig
Springer Nature Switzerland AG (2021)
Kovakantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Representation Theory of Solvable Lie Groups and Related Topics
Ali Baklouti; Hidenori Fujiwara; Jean Ludwig
Springer Nature Switzerland AG (2022)
Pehmeäkantinen kirja
129,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Representation Theory of Solvable Lie Groups and Related Topics
Baklouti Ali Baklouti; Fujiwara Hidenori Fujiwara; Ludwig Jean Ludwig
Springer Nature B.V. (2021)
Pehmeäkantinen kirja
116,30
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Harmonic Analysis on Exponential Solvable Lie Groups
97,90 €
Springer Verlag, Japan
Sivumäärä: 465 sivua
Asu: Kovakantinen kirja
Painos: 2015 ed.
Julkaisuvuosi: 2014, 16.12.2014 (lisätietoa)
Kieli: Englanti
Tuotesarja: Springer Monographs in Mathematics
This book is the first one that brings together recent results on the harmonic analysis of exponential solvable Lie groups. There still are many interesting open problems, and the book contributes to the future progress of this research field. As well, various related topics are presented to motivate young researchers.

The orbit method invented by Kirillov is applied to study basic problems in the analysis on exponential solvable Lie groups. This method tells us that the unitary dual of these groups is realized as the space of their coadjoint orbits. This fact is established using the Mackey theory for induced representations, and that mechanism is explained first. One of the fundamental problems in the representation theory is the irreducible decomposition of induced or restricted representations. Therefore, these decompositions are studied in detail before proceeding to various related problems: the multiplicity formula, Plancherel formulas, intertwining operators, Frobeniusreciprocity, and associated algebras of invariant differential operators.

The main reasoning in the proof of the assertions made here is induction, and for this there are not many tools available. Thus a detailed analysis of the objects listed above is difficult even for exponential solvable Lie groups, and it is often assumed that G is nilpotent. To make the situation clearer and future development possible, many concrete examples are provided. Various topics presented in the nilpotent case still have to be studied for solvable Lie groups that are not nilpotent. They all present interesting and important but difficult problems, however, which should be addressed in the near future. Beyond the exponential case, holomorphically induced representations introduced by Auslander and Kostant are needed, and for that reason they are included in this book.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Harmonic Analysis on Exponential Solvable Lie Groupszoom
Näytä kaikki tuotetiedot
ISBN:
9784431552871
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste