SULJE VALIKKO

avaa valikko

Fred Nwanganga | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Practical Machine Learning in R
Fred Nwanganga; Mike Chapple
John Wiley & Sons Inc (2020)
Pehmeäkantinen kirja
32,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
CompTIA DataX Study Guide - Exam DY0-001
Fred Nwanganga
John Wiley & Sons Inc (2024)
Pehmeäkantinen kirja
59,70
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Practical Machine Learning in R
32,80 €
John Wiley & Sons Inc
Sivumäärä: 464 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2020, 06.07.2020 (lisätietoa)
Kieli: Englanti
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language

Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. 

Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. 



Explores data management techniques, including data collection, exploration and dimensionality reduction
Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering
Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques
Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost

Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Practical Machine Learning in Rzoom
Näytä kaikki tuotetiedot
ISBN:
9781119591511
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste