SULJE VALIKKO

avaa valikko

Filip Malmberg | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Visual Saliency: From Pixel-Level to Object-Level Analysis
Jianming Zhang; Filip Malmberg; Stan Sclaroff
Springer (2019)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Discrete Geometry and Mathematical Morphology - First International Joint Conference, DGMM 2021, Uppsala, Sweden, May 24–27, 202
Joakim Lindblad; Filip Malmberg; Nataša Sladoje
Springer Nature Switzerland AG (2021)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Visual Saliency: From Pixel-Level to Object-Level Analysis
49,60 €
Springer
Sivumäärä: 138 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2019, 02.02.2019 (lisätietoa)
Kieli: Englanti
This book provides an introduction to recent advances in theory, algorithms and application of Boolean map distance for image processing. Applications include modeling what humans find salient or prominent in an image, and then using this for guiding smart image cropping, selective image filtering, image segmentation, image matting, etc.

In  this  book, the authors present methods for both traditional and emerging saliency computation tasks, ranging from classical low-level tasks like pixel-level saliency detection to object-level tasks such as subitizing and salient object detection. For low-level tasks, the authors focus on pixel-level image processing approaches based on efficient distance transform. For object-level tasks, the authors propose data-driven methods using deep convolutional neural networks. The book includes both empirical and theoretical studies, together with implementation details of the proposed methods. Below are the key features fordifferent types of readers.

For computer vision and image processing practitioners:

  • Efficient algorithms based on image distance transforms for two pixel-level saliency tasks;

  • Promising deep learning techniques for two novel object-level saliency tasks;

  • Deep neural network model pre-training with synthetic data;
  • Thorough deep model analysis including useful visualization techniques and generalization tests;

  • Fully reproducible with code, models and datasets available.

For researchers interested in the intersection between digital topological theories and computer vision problems:

  • Summary of theoretic findings and analysis of Boolean map distance;

  • Theoretic algorithmic analysis;

  • Applications in salient object detection and eye fixation prediction.

Students majoring in image processing, machine learning and computer vision:

This book provides up-to-date supplementary reading material for course topics like connectivity based image processing, deep learning for image processing;

Some easy-to-implement algorithms for course projects with data provided (as links in the book);

Hands-on programming exercises in digital topology and deep learning.



Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 4-5 viikossa | Tilaa jouluksi viimeistään 27.11.2024
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Visual Saliency: From Pixel-Level to Object-Level Analysiszoom
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste