SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Faisal Masood | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Machine Learning on Kubernetes - A practical handbook for building and using a complete open source machine learning platform on
Faisal Masood; Ross Brigoli
Packt Publishing Limited (2022)
Pehmeäkantinen kirja
63,90
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
The The Kubernetes Workshop - Learn how to build and run highly scalable workloads on Kubernetes
Zachary Arnold; Sahil Dua; Wei Huang; Faisal Masood; Melony Qin; Mohammed Abu Taleb
Packt Publishing Limited (2020)
Pehmeäkantinen kirja
53,50
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Machine Learning on Kubernetes - A practical handbook for building and using a complete open source machine learning platform on
63,90 €
Packt Publishing Limited
Sivumäärä: 384 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2022, 24.06.2022 (lisätietoa)
Kieli: Englanti
Build a Kubernetes-based self-serving, agile data science and machine learning ecosystem for your organization using reliable and secure open source technologies

Key Features

Build a complete machine learning platform on Kubernetes
Improve the agility and velocity of your team by adopting the self-service capabilities of the platform
Reduce time-to-market by automating data pipelines and model training and deployment

Book DescriptionMLOps is an emerging field that aims to bring repeatability, automation, and standardization of the software engineering domain to data science and machine learning engineering. By implementing MLOps with Kubernetes, data scientists, IT professionals, and data engineers can collaborate and build machine learning solutions that deliver business value for their organization.

You'll begin by understanding the different components of a machine learning project. Then, you'll design and build a practical end-to-end machine learning project using open source software. As you progress, you'll understand the basics of MLOps and the value it can bring to machine learning projects. You will also gain experience in building, configuring, and using an open source, containerized machine learning platform. In later chapters, you will prepare data, build and deploy machine learning models, and automate workflow tasks using the same platform. Finally, the exercises in this book will help you get hands-on experience in Kubernetes and open source tools, such as JupyterHub, MLflow, and Airflow.

By the end of this book, you'll have learned how to effectively build, train, and deploy a machine learning model using the machine learning platform you built.

What you will learn

Understand the different stages of a machine learning project
Use open source software to build a machine learning platform on Kubernetes
Implement a complete ML project using the machine learning platform presented in this book
Improve on your organization's collaborative journey toward machine learning
Discover how to use the platform as a data engineer, ML engineer, or data scientist
Find out how to apply machine learning to solve real business problems

Who this book is forThis book is for data scientists, data engineers, IT platform owners, AI product owners, and data architects who want to build their own platform for ML development. Although this book starts with the basics, a solid understanding of Python and Kubernetes, along with knowledge of the basic concepts of data science and data engineering will help you grasp the topics covered in this book in a better way.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 3-4 viikossa
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Machine Learning on Kubernetes - A practical handbook for building and using a complete open source machine learning platform on
Näytä kaikki tuotetiedot
ISBN:
9781803241807
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste