SULJE VALIKKO

Englanninkielisten kirjojen poikkeusaikata... LUE LISÄÄ

avaa valikko

Ender Konukoglu | Akateeminen Kirjakauppa

Haullasi löytyi yhteensä 2 tuotetta
Haluatko tarkentaa hakukriteerejä?



Decision Forests - A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised
Antonio Criminisi; Jamie Shotton; Ender Konukoglu
now publishers Inc (2012)
Pehmeäkantinen kirja
101,80
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support - Seco
Kenji Suzuki; Mauricio Reyes; Tanveer Syeda-Mahmood; Ender Konukoglu; Ben Glocker; Roland Wiest; Yaniv Gur; Ha Greenspan
Springer Nature Switzerland AG (2019)
Pehmeäkantinen kirja
49,60
Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
Decision Forests - A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised
101,80 €
now publishers Inc
Sivumäärä: 162 sivua
Asu: Pehmeäkantinen kirja
Julkaisuvuosi: 2012, 04.04.2012 (lisätietoa)
Kieli: Englanti
Tuotesarja: Foundations and Trends(r) in C 21
In recent years decision forests have established themselves as one of the most promising techniques in machine learning, computer vision and medical image analysis. This book is directed at engineers and PhD students who wish to learn the basics of decision forests as well as more senior researchers who wish to push the state of the art in automated image understanding.

The authors presents a unified, efficient model of random decision forests which can be used in a number of applications such as scene recognition from photographs, object recognition in images, automatic diagnosis from radiological scans and document analysis. Such applications have traditionally been addressed by different, supervised or unsupervised machine learning techniques. In contrast, here we cast diverse tasks such as regression, classification and semi-supervised learning as instances of the same general decision forest model.

The flexibility of the forest framework further extends to tasks such as density estimation, manifold learning and semi-supervised learning. The unified forest framework gives us the opportunity to implement and optimize the underlying algorithm only once, and then easily adapt it to individual applications with relatively small changes. The theoretical basis and numerous explanatory examples presented in this book serve as a solid platform upon which to build exciting future research.

Tuotetta lisätty
ostoskoriin kpl
Siirry koriin
LISÄÄ OSTOSKORIIN
Tilaustuote | Arvioimme, että tuote lähetetään meiltä noin 1-3 viikossa.
Myymäläsaatavuus
Helsinki
Tapiola
Turku
Tampere
Decision Forests - A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervisedzoom
Näytä kaikki tuotetiedot
ISBN:
9781601985408
Sisäänkirjautuminen
Kirjaudu sisään
Rekisteröityminen
Oma tili
Omat tiedot
Omat tilaukset
Omat laskut
Lisätietoja
Asiakaspalvelu
Tietoa verkkokaupasta
Toimitusehdot
Tietosuojaseloste